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Abstract

Off-road autonomous driving poses significant challenges
such as navigating diverse terrains, avoiding obstacles, and
maneuvering through ditches. Addressing these challenges
requires effective planning and adaptability, making it a long-
horizon planning and control problem. Traditional model-
based control techniques like Model Predictive Path Integral
(MPPI) require dense sampling and accurate modeling of the
vehicle-terrain interaction, both of which are computationally
expensive, making effective long-horizon planning in real-
time intractable. Reinforcement learning (RL) methods op-
erate without this limitation and are computationally cheaper
at deployment. However, exploration in obstacle-dense and
challenging terrains is difficult, and typical RL techniques
struggle to navigate in these terrains. To alleviate the limita-
tions of MPPI, we propose a hierarchical autonomy pipeline
with a low-frequency high-level MPPI planner and a high-
frequency low-level RL controller. To tackle RL’s exploration
challenge, we propose a teacher-student paradigm to learn
an end-to-end RL policy, capable of real-time execution and
traversal through challenging terrains. The teacher policy is
trained using dense planning information from an MPPI plan-
ner while the student policy learns to navigate using visual
inputs and sparse planning information. In this framework,
we introduce a new policy gradient formulation that extends
Proximal Policy Optimization (PPO), leveraging off-policy
trajectories for teacher guidance and on-policy trajectories
for student exploration. We demonstrate our performance in a
realistic off-road simulator against various RL and imitation
learning methods.

Code and Video — https://github.com/tadpo-ml4ad/tadpo

Introduction
Autonomous ground vehicles have advanced significantly in
recent years, with applications such as delivery robots and
self-driving taxis. While great progress has been made in
structured, urban environments, navigating off-road terrains
remains a major challenge. Unlike on-road driving, off-road
driving requires effective planning to avoid obstacles, speed
management to navigate extreme slopes, and rapid adaptive
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maneuvers to handle varied traction levels and terrains such
as dirt, sand, and rocks. Hence, it requires sophisticated con-
trol techniques to traverse in these challenging terrains. Suc-
cessfully navigating large, unstructured environments also
depends on effective long-distance planning, making it both
a long-horizon planning and adaptive control problem.

Conventional control methods for off-road vehicles often
depend on model-based techniques, like Model Predictive
Path Integral (MPPI) (Han et al. 2024; Williams, Aldrich,
and Theodorou 2015). Model-based techniques rely on en-
vironmental details, such as segmentation maps and depth
maps, to provide waypoints for a low-level controller. These
methods necessitate very dense sampling of waypoint roll-
outs to effectively avoid obstacles and manage diverse ter-
rains. However, this dense sampling requirement is compu-
tationally expensive, making it impractical to run these con-
trollers in real-time for simultaneous globally optimal trajec-
tory planning and terrain handling. Some attempts have been
made to improve sampling efficiency by learning a state-
dependent control action distribution and learning a terminal
value function (Qu et al. 2024; Hansen, Wang, and Su 2022),
thereby reducing required number of samples and planning
horizon.

Reinforcement learning (RL) is highly effective for tack-
ling complex, high-dimensional, and sequential tasks that
are often challenging for traditional control methods. RL
models typically utilize neural networks with a limited num-
ber of layers, enabling rapid inference. This capability also
allows them to execute swift action maneuvers effectively in
response to diverse terrains which is impossible with model-
based planners. However, in an off-road environment, when
attempting to avoid obstacles and ditches, RL methods face
significant challenges in exploration, often rendering it diffi-
cult to learn these complex tasks effectively. Specifically in
applications like off-road autonomous driving where envi-
ronment simulation is relatively costly, environment transi-
tion dynamics are highly stochastic, and dense rewards can
encourage expediency, exploration is hard without guidance
from an external source or access to global planning infor-
mation. Some works have explored end-to-end RL methods
(Kalaria et al. 2024; Hensley and Marshall 2022; Wang et al.
2023) for specific aspects of off-road driving. However, they
lack a planning component and realistic simulation, mak-
ing these methods significantly less suitable for realistic off-



Figure 1: Illustration of the proposed hierarchical autonomy framework, integrating an MPPI planner and an RL controller for
off-road navigation. During deployment, the framework enables effective global planning through MPPI while reducing the
need for frequent costly sampling. During training, the planner plans at different granularity, facilitating training of a teacher
policy using dense waypoints. The teacher’s demonstrations facilitate effective exploration during the training of the student
policy through updates provided by TADPO.

road autonomy. Some works (Kendall et al. 2018; Isele et al.
2018; Fayjie et al. 2018) have attempted to address specific
aspects of on-road driving using RL. However, the challenge
there is the unpredictable behavior of the other actors rather
than the variability of the terrain.

Proximal Policy Optimization (PPO) (Schulman et al.
2017) is a popular RL framework that allows for stable on-
policy learning. Despite its advantages, PPO faces limita-
tions in effective exploration as it relies on random actions
sampled around the policy’s intended action for exploration.
Because of this, in the proposed off-road driving problem,
training a policy with PPO for waypoint distances greater
than tens of meters faces significant exploration challenges,
and attempting to master multiple off-road navigation skills
particularly in avoiding obstacles and navigating extreme
slopes leads to ineffective policy training and failure to com-
plete the task. Therefore, our goal is to distill planning infor-
mation from a teacher trained with the aid of a dense planner
on a reduced observation space, while a student learns off-
road traversal using an extended observation space without
access to the computationally expensive planning data.

Since PPO is on-policy, it can only be trained on trajec-
tories collected from its own policy and cannot incorporate
external guidance. Attempts to incorporate demonstrations
in PPO have been made, though with notable limitations.
PPO+D (Libardi and Fabritiis 2021) extends PPO by in-
corporating a single off-policy trajectory into the training
process. This approach modifies the PPO replay buffer to
include three components: Dr for successful trajectories,
Dv for failure trajectories and D for the currently sampled
trajectories. When sampling from Dv , the paper employs
value-based sampling, which becomes impractical for tasks
that involve large replay buffers with visual inputs. In off-
road driving, navigating diverse terrains requires a broad
range of skills, making large buffers for the teacher demon-

stration replay and the failure replay buffer in PPO+D cru-
cial. This necessity renders PPO+D unsuitable for the task.

There have been a few attempts to learn policies from
demonstrations and through a teacher-student framework
in autonomous vehicles. Some previous work (Peng et al.
2022) uses off-policy methods like SAC and choose actions
between a teacher and student policy to solve simpler tasks
like lane following and obstacle avoidance. Some teacher-
student paradigms, such as those using Deep Q-network
(Hester et al. 2017), focus on discrete action spaces. Others
(Kang, Jie, and Feng 2018; Martin, Chekroun, and Moutarde
2021) use existing off-policy methods like Soft Actor-Critic
(SAC) to update a student policy. In complex planning and
control tasks, these methods tend to be less stable during
training (James W. Mock 2023). Therefore, we use PPO as
our RL training method.

To address the limitations of MPPI, we propose a hi-
erarchical end-to-end pipeline that integrates a high-level
MPPI planner with a lower-level reinforcement learning
controller focused on adaptive execution for effective obsta-
cle avoidance and navigation through challenging terrains.
To resolve the exploration issues of PPO, we propose a
novel method, Teacher Action Distillation with Policy Opti-
mization (TADPO), which extends PPO to optimize policy
based on trajectories collected by an expert teacher policy.

Background

We formulate the low-level control of the off-road driving
problem as a Markov Decision Process (MDP), represented
by the tuple M = (S,A, P, r, γ), where: S is the state
space, A is the action space, P (s′|s, a) is the transition dy-
namics function, r : S ×A → R is the reward function, and
γ ∈ [0, 1) is the discount factor. Our objective is to identify



an optimal policy π∗ such that

π∗ = argmax
π

Eπ

[ ∞∑
t=0

γtr(st, at)

]
(1)

Policy Gradient Optimization Methods
A common family of on-policy RL methods uses a policy
gradient to optimize policies. A key aspect of policy gradi-
ent methods, is that the gradient is computed with respect to
the distribution of states induced by the current policy. By
utilizing this distribution, policy gradients can be derived
from the expected return, facilitating updates to the policy
parameters. In general, the policy gradient has the form:

∇J(θ) = Eτ∼πθ

[
∇ log πθ(at|st)Â(st, at)

]
(2)

where τ is a trajectory and Â is the advantage estimate.

Proximal Policy Optimization PPO (Schulman et al.
2017) improves traditional policy gradient methods by lim-
iting large policy updates through a clipped surrogate objec-
tive to optimize θ:

LCLIP(θ) = Et

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
(3)

LVF(θ) = Et

[
(Vπθold

(st)−Rt)
2
]

(4)

Lentropy(θ) = Et [−H[πθ(·|st)]] (5)

LPPO(θ) = LCLIP(θ)− c1L
VF(θ) + c2L

entropy(θ) (6)

where rt(θ) = πθ(at|st)
πθold (at|st) is the probability ratio of the

action in distribution πθ(at|st) and πθold(at|st), Ât =∑t+T
i=t (γλ)

i−tδi is the generalized advantage estimate
with δt = Rt + γVπθold

(st+1) − Vπθold
(st), Rt =∑t+T

i=t γi−tr(si, ai)+γT−t+1V (sT+1) is the discounted re-
turn, and T is the number of transitions, H[πθ(·|st)] is the
entropy of the policy’s action distribution given state st, and
the value function Vπθold

(st) is the expected return of state
st. LPPO updates the actor towards the more advantageous
actions at state st, and LVF updates the value function so
it represents the expected return of the policy for the current
state, Lentropy encourages exploration by the policy and c1, c2
are constants. Instead of making unrestricted updates to the
policy, PPO introduces a clipping mechanism to ensure that
policy updates remain within a constrained region, which
stabilizes training and leads to more reliable convergence.

It is important to note that the advantage estimate Ât re-
flects how much advantageous the current action at is com-
pared to the expected value of the state, represented by
Vπθold

. Thus, the gradient update from (6) is meaningful only
when Vπθold

sufficiently represents the expected return of the
actor of policy πθold . This intuition is a crucial insight for
(10) in our proposed method.

For tasks that encounter exploration challenges due to
complex planning requirements, PPO fails to learn effec-
tive policies (Libardi and Fabritiis 2021). Introducing undi-
rected randomness to the actor can lead to inefficient explo-
ration because the random actions may not be strategically

aligned with the task objectives. This lack of direction leads
the agent to explore suboptimal areas, hindering policy im-
provement in complex environments where targeted explo-
ration is essential. Therefore, it is necessary to distill this
planning knowledge while training PPO using a teacher ex-
pert. As PPO is an on-policy algorithm, it lacks the ability to
learn from off-policy trajectories in the form of demonstra-
tions. This limits its application in tasks where exploration
is difficult.

Model-based Control
Model Predictive Control (MPC) is a traditional control
framework that uses sampling or optimization techniques to
minimize a cost function, making it effective for generating
control action in complex, nonlinear systems. The optimal
action sequence a∗ is chosen via

a∗ = argmin
a

h∑
i=0

C(si, ai) (7)

where C is the cost function, si is the state, ai is the
action at step i and h is the horizon. Some techniques
for selecting optimal actions are Cross-Entropy Method
(CEM) (Kobilarov 2012) and Model Predictive Path In-
tegral (MPPI) (Williams, Aldrich, and Theodorou 2015).
MPPI is a sampling-based method that applies importance-
weighted optimization to generate control outputs. CEM is a
sampling-based, iterative optimization technique that refines
a probability distribution over control parameters for robust
control outputs. MPPI has proven popular in recent literature
due to its high parallelizability and speed.

TADPO: Teacher Action Distillation with
Policy Optimization

As illustrated in Figure 1, we formulate a new method to
train a student policy π capable of local execution to be
used in conjunction with a sparse global MPPI planner by
combining on-policy exploration with off-policy distillation.
The same MPPI planner also generates dense waypoints
spanning the sparse waypoints to train a teacher policy µ.
Demonstrations generated by the teacher policy then pro-
vides guidance to facilitate exploration and learning of the
student policy.

Teacher Action Distillation Policy Gradient
For a pre-trained teacher policy µ, we define the loss L used
for training a student policy π. This loss is applied exclu-
sively to trajectories sampled from the teacher, meaning that
actions are drawn from µ at each time step, at ∼ µ.

LTAD(θ) = Lµ(θ) + c2L
entropy(θ) (8)

ρt(θ) =
πθ(at|sπt )
µ(at|sµt )

(9)

∆̂t = R(at, st)− Vπθold(s
π
t ) (10)

Lµ(θ) = Eat∼µ

[
max

(
0,min(ρt(θ), 1 + ϵµ)∆̂t

)]
(11)



where Lentropy is defined as in (5). Note that the teacher
policy µ and the student policy π have distinct observa-
tion spaces given the same environment state, denoted by
sµt , s

π
t , st respectively.

The likelihood ratio defined in (9) resembles the one used
in PPO when Ât > 0. We substitute the likelihood of at
under πθold with the likelihood under µ. ρ quantifies the dif-
ference between πθ and µ and clipping ρ restricts gradient
updates to the policy when ρ exceeds 1 + ϵµ, where ϵµ is a
hyperparameter.

In (10), ∆̂t measures the advantage between the dis-
counted reward from st collected using the teacher pol-
icy and the expected student policy return Vπθold

(sπt ). As
Vπθold

(sπt ) represents expected return of πθold at st, ∆̂t is pos-
itive when the teacher trajectory earns a higher reward than
the expected student return and negative vice-versa. Hence,
the update to πθ is relative to the student’s value function
over the actions generated by µ. This is an extension of the
advantage function for off-policy trajectories.

As Figure 2 shows, during the TADPO update, only the
actor network and the feature encoder are updated using
LTAD as in (8). The value function is only updated using
trajectories generated by the student exploration process ac-
cording to the intuition provided in .

Figure 3 gives an visualization of the value of distillation
function as a function of ρ and ∆̂. Using ρ and ∆̂ in (8) en-
sures that the policy gradient only propagates when (i) the
teacher trajectory rewards are higher than the expected stu-
dent return and (ii) the student’s likelihood of performing
the same action at is not significantly higher than that of
the teacher. Also similar to PPO, Lentropy in (8) regulates the
exploration of the student policy.

A key observation is that in pure policy gradient methods,
gradient computation means the policy improvement occurs
only over a state distribution induced by the existing pol-
icy. However, it is both reasonable and feasible to improve
the policy over other distributions. In particular, if one hap-
pened to already know the optimal distribution, or at least a
better distribution, it could be advantageous to focus pol-
icy updates on that. Our modified algorithm does exactly
that. Even if trajectories sampled according to the existing
(poor) student policy would be unlikely to visit some state
st, π(·|sπt ) can still be optimized using signals generated
from the teacher trajectories.

Training Procedure
Teacher action distillation with policy gradients involves op-
timizing an actor function while simultaneously bootstrap-
ping a value function with the expected return of that actor.
Consequently, training a policy with TADPO requires inter-
lacing trajectories sampled from both the teacher and stu-
dent policies. Thus in on-policy settings, training the policy
in separate phases of imitation learning and reinforcement
learning does not yield a sufficiently accurate student value
function, hindering effective learning from teacher trajecto-
ries.

We then propose algorithm 1 to enable the simultaneous
training of the actor using teacher trajectories and student

trajectories. In our implementation, ∆̂t is normalized to have
standard deviation 1 in every mini-batch since the reward
definition is unbounded.

Algorithm 1: TADPO

1: Input: Teacher policy µ, Student policy π, Teacher sam-
ple probability p

2: Return: Parameters of student policy θ
3: Collect Nµ teacher transitions Bµ ← {τtat∼µ

=

(sµt , at, Rt, µ(at|sµt ))}
4: for iter = 1 to I do
5: Collect Nπ student transitions Bπ ← {τtat∼πθold

=

(sπt , at, Rt, πθold(at|sπt ))}
6: for epoch = 1 to K do
7: while Bπ ̸= ∅ do
8: r ∼ U(0, 1)
9: if r > p then

10: Sample n transitions τ ← τt ∼ Bπ with-
out replacement

11: θ ← PPOUpdate(τ)
12: else
13: Sample n transitions τ ← τt ∼ Bµ with-

out replacement
14: θ ← TADPOUpdate(τ)
15: end if
16: end while
17: Reinitialize Bµ and Bπ

18: end for
19: end for

Off-road Autonomy Stack

As shown in Figure 1, we use two subsystems to achieve off-
road autonomous driving: an MPPI-based high-level planner
that generates waypoints towards a predefined goal using
coarse, global information; and a RL-based controller that
learns to track sparse waypoints using local information.

The MPPI planner for this problem is designed in accor-
dance with (Han et al. 2024), with the same cost function.
For the teacher policy, MPPI provides dense waypoints and
is referred further as MPPI-d. The teacher is a PPO con-
troller trained to track provided MPPI-d waypoints, anal-
ogous to the hybrid controller for quadrupedal robots in
(Jenelten et al. 2024). During training and deployment of the
student policy, MPPI provides sparse waypoints and is re-
ferred to as MPPI-s. Because of the high runtime cost of the
MPPI-d planner, when generating teacher demonstrations,
a fixed, pre-computed set of expert MPPI-d waypoints are
used. By training with different waypoint distances, respon-
sibility for planning at intermediate distances is shifted from
the MPPI-d planner to the student policy controller. This al-
lows for much faster and less frequent planning at deploy-
ment.



Figure 2: This diagram shows the policy update process when sampling from the teacher demonstration replay buffer. This
update process only updates the actor and the feature encoder of the policy and uses the critic as the measure of the relative
advantage between teacher action to the student performance given the observation.

1 1 + ϵµ
ρ · sign(∆̂)

Lµ

Figure 3: A single timestep of the teacher distillation loss
function Lµ as a function of ρ∗sign(∆̂). The intended effect
of the Lµ formulation is that student policy only learns from
the teacher policy when the return by the teacher demonstra-
tion is higher than the expected return of the student given
the state and not too much more likely (controlled by clip-
ping factor ϵµ) to predict such action, thereby ensuring sta-
bility of policy during training.

Results and Discussions
Experiment Setup
Observation and Action Spaces The observation space
for both teacher and student policies includes the vehi-
cle’s state at time step t (position pt, velocity vt, ac-
celeration at, and orientation angles roll θrt , pitch θpt ,
and yaw θyt ) along with waypoint information generated
by the MPPI planner. The single-stepproprioceptive input
to the policies Op

t = (ditt , d
it+1
t , βit , βit+1,

|vt|
vmax

, θrt , θpt)

includes the signed waypoint distance dit, relative yaw
βit , velocity normalized by max speed vmax, and orien-
tation angles θr (roll) and θp (pitch). Visual inputs in-
clude a top-down camera C td

t (rad,res,chan) and a
front-facing camera C f

t. The camera observes a square
of side 2 · rad m at the vehicle’s center of mass, with
resolution (res,res). The channel chan can be rgbd
(color and depth) or depth (only depth). The cam-
era uses a perspective model with a height of 240 m
above the vehicle. Finally, inputs to the teacher policy are
Ot

t = (Op
t , C

td
t (15, 64,rgbd), C

f
t) and the student policy

are Os
t = (Op

t , C
td
t (30, 64,rgbd), C

td
t (90, 64,depth), C

f
t)

The final observation spaces both utilize a stack of 3 histori-
cal frames for the final observation. The environment tracks
the current waypoint index it, and once the vehicle reaches a
threshold distance rswitch, it progresses to the next waypoint.
However, the teacher uses densely planned waypoints (6m)
while the student uses sparsely planned waypoints (80m).

The action space is defined by throttle τt and steering st,
where τt ranges from -1 (full reverse) to +1 (full forward),
and st ranges from -1 (full right turn) to +1 (full left turn),
with gear shifts and braking managed by the simulator.

Reward Function The reward function we designed for
off-road navigation includes five key components. The
progress reward encourages movement toward the goal by
measuring the reduction in distance between the vehicle’s
current and previous positions, while collision and dam-
age penalties address vehicle safety, a jerk penalty discour-
ages sudden acceleration changes, and a success reward is
granted for reaching waypoints.

(a) Training set (b) Test set (c) Simulation

Figure 4: Figure (a) shows example trajectories in the train-
ing set where the teacher policy is trained and demonstra-
tions are collected. Blue dots are waypoints as observed by
the teacher, and red dots are waypoints as observed by the
student. Figure (b) shows examples from the test set, and
only student waypoints are shown in white. The largest way-
point at the end of each trajectory is the goal. Both sets
cover a diverse set of terrain that include obstacles at differ-
ent scales, ditches, and cliffs. Figure (c) shows the vehicle
running over a variety of terrain in simulation and two ex-
amples of camera views as observed by the controller.



Training, Demonstration, and Testing Datasets We
train both the teacher and the student over the same large
map of a desert terrain. For any given start and goal posi-
tion, we use a sparse global map and a global MPPI plan-
ner to generate waypoints of 80 m apart. We choose a fixed
set of start, goal position pairs to serve as teacher training
and demonstration trajectories. Using the MPPI planner sup-
plied with a detailed local semantic segmentation map and
associated depth information, we generate dense waypoints
6 m apart to span the intervals between the sparse 80m way-
points. A similar set is generated to serve as the test trajecto-
ries on which we evaluate all learned policies. For methods
where expert labeling is required, we generate static, dense
waypoints at the beginning of each episode.

We chose these trajectories to cover a range of offroad ob-
stacles. As illustrated in Figure 4b, they can qualitatively be
categorized as terrains with: i) positive obstacles, ii) extreme
slopes, or iii) a hybrid of the preceding categories. The pos-
itive obstacles observed on the testing terrain mainly consist
of natural obstacles (e.g. boulders and trees) and artificial
obstacles (e.g. parked trailers, fences, etc.). Extreme slopes
include ditches and sandy cliffs.

For teacher demonstrations, we collected 15 trajectories
for (i) and (ii) each, and 20 for (iii). For evaluating models,
we collected 8 for (i) and (ii) each, and 15 for (iii).

Evaluation Metrics We aggregate the evaluation perfor-
mance of each policy over the test trajectories. For poli-
cies that produce an action distribution, we deterministically
choose the mode of the distribution as the selected action.
For each episode, we define the following metrics, with val-
ues normalized to the range [0,1]:

• Success Rate (sr): sr = 1 if the vehicle is within a com-
pletion radius r of the goal position. sr = 0 otherwise.

• Completion Percentage (cp): cpmeasures the maximum
progress the vehicle made towards the goal position, nor-
malized by its initial distance to the goal position.

• Mean Speed (ms): ms is the mean speed of the vehicle
during the episode.

Software Setup We use BeamNG (BeamNG GmbH 2022)
as the simulator for our off-road vehicle. Visual example of
the test vehicle driving in simulator is provided in Figure 4c.

For our experiments, we use many existing software pack-
ages for the implementations of the baselines. We use ex-
isting implementation of MPPI and CEM by the authors of
(Zhong, Fazeli, and Berenson 2024) for our planners. We
use the official TD-MPC implementation by (Hansen, Wang,
and Su 2022). We use the DAgger implementation included
in imitation by (Gleave et al. 2022). We also use the of-
ficial implementation of IQL ((Kostrikov, Nair, and Levine
2021)). For SAC and PPO, we use Stable Baselines 3 (SB3)
by (Raffin et al. 2021). We implement our algorithm and
other baseline algorithms based on the SB3 framework.

RL and Imitation Learning Baselines
Table 1 provides a comparison of our method with various
RL and imitation learning baselines. Below, we briefly de-
scribe various intuitive and pre-existing RL baseline meth-

Controller Planner Extreme Slopes Obstacles Hybrid

sr cp ms sr cp ms sr cp ms

Teacher MPPI-d 0.88 0.94 5.83 1.00 1.00 5.91 0.94 0.96 5.69

DAgger MPPI-s 0.00 0.58 1.96 0.00 0.83 1.62 0.00 0.79 1.68
Vanilla PPO MPPI-s 0.00 0.14 0.38 0.00 0.25 0.49 0.00 0.37 0.40

PPO+BC MPPI-s 0.00 0.25 0.94 0.00 0.40 0.78 0.00 0.32 0.84
Vanilla SAC MPPI-s 0.00 0.01 1.71 0.00 0.16 1.64 0.00 0.24 1.61

SAC+Teacher MPPI-s 0.00 0.50 1.21 0.00 0.29 1.24 0.00 0.58 1.24
IQL MPPI-s 0.25 0.49 4.85 0.13 0.71 5.01 0.07 0.76 5.03

TADPO† MPPI-s† 0.75 0.87 4.99 0.85 0.96 5.26 0.67 0.88 5.30

Table 1: Our method (†) compared with baselines, where sr
denotes success rate, cp denotes average completion per-
centage, and ms denotes mean speed. MPPI-d refers to the
local planner which outputs dense waypoints. MPPI-s refers
to the global planner which outputs sparse waypoints. “Ex-
treme Slopes” and “Obstacles” represent the challenging tra-
jectories within the test set, while “Hybrid” refers to a com-
bination of simpler and difficult trajectories.

ods and their integration into our setup. All these policies
that utilize teacher guidance are trained with same teacher
trajectories using dense waypoint guidance from the MPPI
planner.

Imitation Learning Methods

DAgger DAgger (Ross, Gordon, and Bagnell 2011) pro-
vides a straightforward method for supervising the policy by
allowing queries to a teacher during training. Initially, the
teacher trajectories are utilized for behavior cloning (BC)
on the student. Subsequently, the student policy is enhanced
by penalizing the discrepancy between the actions predicted
by the student and those of the teacher at each state en-
countered. In complex environments like off-road driving,
DAgger fails because of compounding errors. As the policy
accumulates error and deviates from expert trajectories, it
encounters unseen or irrecoverable states, thus severely de-
grading its performance.

On-policy methods

Vanilla PPO Vanilla PPO is trained as described in . This
method does not utilize demonstrations from a teacher and
is trained only on sparse waypoints. As described in , Vanilla
PPO encounters exploration challenges in obstacle-rich ter-
rains, which hinders its ability to learn an optimal strat-
egy. Without guidance, the policy fails to differentiate be-
tween various types of terrains and defaults to a sub-optimal,
overly-cautious strategy.

PPO+BC A naive approach to distill teacher actions into
the student is to incorporate a KL divergence loss between
the predicted action distributions of the student and teacher.
PPO+BC introduces a loss term that aligns the policy π
with the teacher policy µ across all encountered states. The
vanilla PPO loss function is modified to LKL for training.

LKL = LPPO − βKL[π(at|sπt ), µ(at|s
µ
t )] (12)

While this provides strong supervision, a issue similar to
DAgger arises when the student queries the expert from out-
of-distribution states and optimizes using sub-optimal action



labeling. Additionally, the updates from the KL divergence
term are unconstrained, which leads to unstable training and
results in convergence to a sub-optimal policy.

Off-Policy methods

Vanilla SAC SAC (Haarnoja et al. 2018) is an off-policy
RL algorithm that optimizes a stochastic policy and value
function, enabling efficient and stable learning for contin-
uous control tasks. SAC struggles in our high-exploration,
multi-task setup because its entropy maximization can lead
to excessive exploration of irrelevant actions, reducing its fo-
cus on task-specific objectives. This makes it less effective in
environments requiring targeted exploration and adaptation
to multiple tasks with distinct strategies.

SAC+Teacher As an off-policy algorithm, SAC can uti-
lize trajectories from teacher demonstrations without requir-
ing any modifications to the algorithm. A portion of the re-
play buffer is pre-populated during the training. In this case,
the buffer size remains consistent with TADPO, with the
teacher trajectory ratio set at p = 0.5. As also shown in
(Yu et al. 2019), SAC does not perform well when it has to
handle various different kinds of tasks (in this case, a very
diverse set of terrains).

IQL Implicit Q-learning (Kostrikov, Nair, and Levine
2021) which extends Q-learning and actor critic methods is
an off-policy reinforcement learning method that estimates
Q-values without directly optimizing a policy, allowing the
agent to implicitly select actions that maximize the value
function. It is used in our teacher-student setup by follow-
ing the actions suggested by the teacher’s demonstrations,
reinforcing behavior through the learning of Q-values asso-
ciated with those actions. IQL demonstrates some success
in navigating extreme slope terrains, but its overall perfor-
mance does not match that of TADPO. As noted in (Janner
et al. 2022), IQL excels in single-task scenarios but faces
challenges in multi-task environments, such as off-road au-
tonomy. Given that off-road autonomy involves dynamically
handling obstacle avoidance and rapid changes in how the
vehicle and terrain interacts, IQL struggles to perform effec-
tively in this setup.

Model-based Baselines
The first section of Table 2 provides performance of the
planner baselines for comparison. These planners are run
while simulation is paused, allowing them to provide the
next action before continuing. They show that with enough
samples and planning horizon, these planners perform simi-
larly well. The trained dense waypoint tracking policy, while
following MPPI-d waypoints, perform similarly to a PID
controller, but is more aggressive as indicated by its higher
mean speed.

A key difference between these planners is their time of
inference. We observe that inference time is more sensi-
tive to h than N , which reduces long-horizon understand-
ing and, in turn, degrades real-time performance. Compared
to MPPI, CEM takes a more iterative approach to sampling
and evaluating action sequences, thus requires more com-
pute time to plan. RL+MPPI enhances MPPI by learning a

terminal value function and a state-dependent action distri-
bution, thereby reducing its required number of trajectories
sampled and sampling horizon.

Planner Controller Extreme Slopes Obstacles Hybrid

sr cp ms sr cp ms sr cp ms ti

CEM-d PID 0.88 0.96 5.51 1.00 1.00 5.16 0.87 0.94 5.13 3.47
MPPI-d PID 0.88 0.96 5.39 1.00 1.00 5.87 0.87 0.94 5.43 2.02

RL+MPPI-d PID 0.88 0.96 5.26 1.00 1.00 5.88 0.87 0.94 5.40 1.77
MPPI-d Teacher 0.88 0.94 5.83 1.00 1.00 5.91 0.94 0.96 5.69 2.02

CEM-d∗ PID 0.38 0.49 5.52 0.25 0.38 5.16 0.27 0.43 5.13 0.13
MPPI-d∗ PID 0.38 0.57 5.43 0.25 0.48 5.48 0.27 0.46 5.54 0.12

RL+MPPI-d∗ PID 0.38 0.61 5.32 0.25 0.50 5.46 0.27 0.52 5.63 0.12
MPPI-s†∗ TADPO† 0.75 0.87 4.99 0.85 0.96 5.26 0.67 0.88 5.30 0.002

Table 2: Our method (†) compared with baselines, where sr
denotes Success Rate, cp denotes Completion Percentage,
ms denotes mean speed, and ti is the Time of Inference
for one control step. ∗ denotes allotting a limited compute
budget for main control loop necessary for real-time deploy-
ment. -d denotes planning at dense waypoint distances while
-s denotes planning at sparse waypoint distances.

When running in real-time (as shown in the second sec-
tion of Table 2), all three methods degrade drastically in per-
formance because of a significantly reduced horizon h and
number of sampled trajectories N . This forces the planner
to generate globally suboptimal waypoints, leading to worse
performace. Because of the sparsity of the waypoints, MPPI-
s can be run in parallel as the TADPO controller tracks the
sparse waypoints. This enables MPPIs to select waypoints
more efficiently and effectively, leading to significantly bet-
ter real-time driving performance of MPPI-s+TADPO com-
pared to other methods.

TADPO
TADPO outperforms state-of-the-art RL baseline methods,
demonstrating its ability to learn to navigate a diverse set
of off-road terrains. The policy’s success rate (sr) signifi-
cantly surpasses that of other baseline methods. Addition-
ally, TADPO attains a high mean speed (ms) across all test
trajectory sets compared to all other controller baselines.
For model-based baselines, MPPI-s+TADPO significantly
outperforms all other planner baselines in real-time driving.
The inference time of TADPO is notably lower than that of
model-based methods, highlighting its effectiveness in en-
vironments with diverse terrains, where quick adaptive ma-
neuvers are essential.

Through ablations we find that ϵµ = 0.5 and a constant
p = 0.5 provides best performance of the algorithm which
has been used for comparing with baselines.

Conclusion
We propose (i) a hierarchical off-road autonomy pipeline
and (ii) a new hybrid policy optimization method TADPO.
The pipeline combines the strengths of MPPI and RL to
provide a robust solution for off-road autonomous driving
in complex terrains. TADPO leverages a teacher-student
paradigm with a novel policy gradient formulation to resolve
the challenges of exploration and planning. Our experimen-
tal results demonstrate significant improvements in navigat-
ing challenging environments compared to existing RL and



imitation learning methods, validating the potential of our
approach. We plan to deploy this algorithm onto real vehi-
cles in our future work.
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